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Abstract. We show that a quantum dimension D&) for a representation p of Uq(G), a 
quanti& universal enveloping algebra of a compact and simple Lie group G, is computed f“ 
the algebraic equations which we found recently in shldying 2 + ldimensional Chem-Simons 
theory. We solve the equations explicitly for the typical examples of a l l  compact and simple 
Lie groups. This method can be applied to super Lie groups such as SU(m, n) and OSp(m, n). 

Quantum groups [1-4] play important roles in various branches of mathematics and physics 
(see, for example, [5-t3]). However, only a few years have passed,since their discovery, 
and their ‘physical’ meaning is not yet clear. It is, therefore, of great value to study 
‘physical’ aspects of quantum groups. Such investigations may well be useful for grasping 
a deep understanding of quantum groups. 

Quanhun groups were discovered in studying exactly soluble models in two dimensions. 
Rational conformal field theories are known to govern such models. On the other hand, 
there is a close relationship between 1 + 1-dimensional rational conformal field theory and 
2+ 1-dimensional Chem-Simons theory. The quantum group, therefore, is expected to play 
an important role in Chem-Simons theory also. Several people are now trying to construct 
a gauge field theory of a quantum group, in order to make the role of the quantum group 
clear [14-20]. It is, however, very difficult, and it seems that these approaches still contain 
conceptual questions. 

Recently we found another way of tackling the problem [21]. We constructed algebraic 
equations satisfied by vacuum expectation values of Wilson loop operators, which are 
polynomial invariants of coloured knots and links [22-291 in the mathematical literature. 
This system of equations, however, is over-determined. Namely, the number of equations 
exceeds the number of variables. 

Consequently, consistency amongst such a system is strongly expected to be ensured 
by some symmetry. We think it must be the quantum group symmetry. Indeed, the 
vacuum expectation value of an unknotted Wilson loop operator in a representation A 
of a compact and simple Lie group G is nothing but the quantum dimension Dq(A) of the 
corresponding representation of U, (G), a quantized (or Hopf algebra deformation of the) 
universal enveloping algebra. 

In this note we report that D,(h)’s are really determined by solving the algebraic 
equations in the case of all compact and simple Lie groups. The purpose of this paper is 
to stress the existence of such algebraic relations amongst typical quantities of the quantum 
group, which was found in [21] based upon physical arguments. We believe that the 
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comprehensive explicit computations exhibited here must be useful in studying the quantum 
group itself or related topics. 

The equations determining Dq(A) are summarized in the following proposition. 

Proposition. Given decompositions of multiplicity-free tensor products of a finite- 
dimensional irreducible representation Ai with Aj,  and with its dual q, of a compact 
and simple Lie group G: 

r' 
A i @ A j = $ A ,  and A i @ & = $ A , .  

"4 n'=l 

Then, the following algebraic equations for a quantum dimension Dq(A) of an irreducible 
represenation A of Uq(G), a quantized universal enveloping algebra of G, hold if A be 
integrable @(A) below is a quadratic Casimir of A): 

_r 

If Ai = Aj, there are two more relations: 

Here the symmetry factor B. is f l  (-1) if A. is produced as an (anti-) symmetric 
combination of two Ai's. The deformation parameter q. which is a mot of unity in this 
case, is 

where k is an integer (k has the meaning of a level of the &ne Lie algebra gcorresponding 
to the Lie algebra B of the Lie group C). 

This proposition may be amended. For example, it is interesting to investigate whether 
equations (1)-(5) are also valid to a multiplicity-non-free tensor product. In the following 
we consider only the case of the tensor products being multiplicity-free. We anticipate, 
however, the existence of such relations also for multiplicity-non-free cases, although some 
of equations (1 j ( 5 )  might be modified. 

The algebraic equations (1H5) were constructed upon the basis of physical arguments 
in [21]. The essential observation is that D,(A) has the meaning of a vacuum expectation 
value of an unknotted Wilson loop operator in the 2+ 1-dimensional Chem-Simons theory. 
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(k is the coupling constant of the theory). Consequently, a close relationship between 
the Chern-Simons theory and the 1 + 1-dimensional rational conformal field theory was 
used. (From the mathematical point of view D,(A) is a Kauffman regular isotopy invariant 
polynomial for unknots in S3, normalized so that it is .multiplicative for unlinked knots.) 

Instead of repeating such a physical argument, we will show in the following that the 
algebraic relations (1)-(5) can in fact be solved to determine D,(A) in the case of typical 
examples for all compact and simple Lie groups. For the moment we assume that k is 
sufficiently large. For finite k, as is already discussed in [21], explicit expressions for 
D,(rz) calculated below are valid if A is the integrable representationt. 

Our explicit calculations below strongly support that the algebraic equations (lH5) 
contain enough information to determine the Dq(A)'s, although it is not proved rigorously 
in this paper. Indeed, it is easily checked explicitly that they offer us too many equations to 
fix the D,(h)'s: Consistency amongst the equations must be guaranteed by some symmetry, 
which is presumably the quantum group. 

Knowing the properties of D,(A) from, for example, q-deformed character formulae, 
one may be able to give a rigorous proof of the proposition. Our assertion here, however, 
resides in a different point: Dq(A)'s are determined iteratively from the algebraic equations 
(I)+) unambiguously. (Note that we require that D,(h)  becomes the dimension of A in 

. the limit that q goes to 1, in order to eliminate one of the two solutions of the quadratic 
equation.) 

Dq(A) itself is a well investigated quantity. There exist simple and general formulae: 
lemma 1 of Zhang etal [13], for example. Alternative formulae were derived by Wenzl [7] 
by assigning q-numbers to each box of a Young diagram in the case of SO(21fl). Dq(A)'s 
computed in this paper are mainly of the Zhang type, although the Wenzl type of formulae 
are easily anticipated, at least for SU(N) .  All of the quantities calculated in this paper 
agree with the,pevious results (see also [5,6,8-12]). 

We think, however, that there are advantages in this note compared with the previous 
works. Our approach to calculating D,(A) by solving algebraic equations is unique, at least 
to the extent of our knowledge. Moreover, it can be applied for all compact and simple Lie 
groups. It must be, therefore, helpful and also stimulating in extending, for example, the 
results of the Wenzl type to S O ( N )  and Sp(iV). 

It is not difficult to apply the proposition to super Lie groups such as SU(m, n) and 
OS&, n).  But it is not clear whether we are allowed to apply the proposition to such 
cases, because super-conformal fieId theories are not yet well understood. me proposition 
was derived by exploiting the detailed studies of the compact conformal field theories.) We 
can, however, expect to get useful information concerning the super-conformal field theories 
from such calculations. These computations are now in progress [30]. 

Dq(A) itself is also important in calculating link polynomials from the so called skein 
relations. As is well known, LJ,(A), the polynomial for an unknot, is calculated from 
the skein relations in the case where defining representations of classical Lie groups are 
assigned to each knot. For other representations, however, D,(A) can not be determined 
from the skein relations, because they contain more than two crossing term(s) [21]. D,(A) ,  
therefore, must be prepared as inputs for such representations in computing link polynomials 
by using the skein relations. 

7 For example, let us label an irreducible representation of SU(2) of dimension d as d Dq(4 is calculated to 
be [d]& This expression, however, is valid if d 4 k + 1 is satisfied, namely if d is an integrable representation, 
because we required that Dq(4 becomes d under the limit ofq going to 1. Were. [a]= = (x" --+-" )/(x - x - I ) . )  
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Aj = SU(N): N = I + 1. Let us consider the following tensor product decompositions: 

Ai, 8 Ai, = 8 A:, 

Ai, 8 AA, = A i , ,  8 1.- 
-~ ~ 

Here Ai ,  i = 1, . . . , 1 are the fundamental weights of A,. We have used the highest-weight 
vectors to label the irreducible representations: AA! for the defining representation, Ai,+*, 
for the adjoint representation, and so on. In general, with non-negative integer 
q, - is an irreducible representation whose Young tableau has ca boxes in the ith row. 
!Al&, “ A t  = ‘p.1 4 A i + i - 1  is the conjugate of The superscript + (-) appearing 
in e nght-han side of the first equation indicates the (anti-) symmetric combinations of 
two &.,’S. 1 = A0 is the identity representation. Algebraic equations constructed from 
these decompositions are 

~ ( A A , ) ’  = Dq(Az , )  + D q ( h )  = Dq(&,+d + Dq(1) 

qSQ(h,) ( q r Q ( A u ~ ) ~  q (  A U,) +~‘Q(A*’D&bz)) 

i Z Q ( h , )  q * Q ( A ~ s + ~ t ) ~  q( A A,+A,) + q * Q ( l ) ~ q ( l ) ]  
= 4  I 

q*2Q(AA*,)D9(AL,) = q*Q(A%)/zDq(AU~) - q*Q(4)D9(AA2).  

Here we have used the relation D9(x )  = Dq(A). It is proved, owing to the property of our 
algebraic equations being symmetric with respect to D q ( x )  and D,(A). Then, there are 
six equations for five unknownst. As we mentioned at the beginning, the consistency of 
these equations is considered to be guaranteed by the quantum group hidden in the Chem- 
Simons theory. Indeed, they are solved to yield the, following non-trivial solutions by using 
the quadratic Casimirs given in table 1: 

Dq (AA, = [NI& 

Dq(Ai(+~j) = IN + lI~iii[N - 1 1 ~  

D9(1) = 1. 

They are really the so-called q-dimensions! 

t Dq(A)Dq(l) = Dq(A) is derived from the decomposition A 0 1 = A. We then obain Dq(l) = 1, because we 
required that Dq(A) beconies its dimension in the limit q -, 1. in order to eliminate redundant solutions in the 
quadratic equations. There are, therefore, four unknowns in this case. In the following. however, we keep D,(1) 
as an unknown variable, and derive Dq( l )  = 1 from the equations above. This is one of the manifestations of the 
redundancy residing in our system of algebraic equations. 



Quantnm dimensions 241 1 

As a next example, let us consider the following tensor product decompositions: 

AA, 8 A A ~  = AA,+A> 8 AA] 

AA, 8 = &+A, 8 AA, 

. AA, 0 A u ,  = &A, 8 Ai,+i, 

AA, 8 A2h = A ~ , + A ,  8 AA, . 

The algebraic equations derived from these decompositions can 6e solved easily as 

Quadratic Casimirs are listed in table 2. 

Now we consider the following tensor product decompositions: 

AA, 8 AA] = &,+A, 8 AA+ 

AA, 8 A A ~ + A ~  = &A,+A, @ Au, Q &,+A, 

AA, 0 A31, = ha, 8 Au,+i2 

A A ~  8 Ai, = A&, @";,,U, 8 A: 

nu, @ A D ,  = A&, @ A&+At 8 

Au,  @ AA, = A21,+.i2 8 AA,+A~. 

The algebraic equations amongst the D,(AA) with A. = A.4, 11 + 13, 212. 211 + 12 and 
411 are constlucted from these decompositions. They are solved to yield the following 
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non-trivial solutions: 

Quadratic Casimirs are listed in table 3. These examples show that Dq(Ah) is given through 
the standard method of calculating a dimension of AA from Young tableaux by assigning 
not a normal number n but a q-integer [ n ] ~  to each box. 

Table3. Casimir Q(A) of AA,, A A , + ~ ,  AD,,  AX,+^^ and ha,  for SU(N) .  

The formulae given here are correct for 1 2 4. For 1 = 1 to 3 we have to introduce the 
following restrictions 

1 = 1: 

I = 2  A3 + 0 ignore A b  

hz + 0 ignore A A ~ ,  AA,+A~ and A b  

1 =3: A4 + 0. 

Note that for 1 = 1 the exact formuale are easily computed [21]: 

D g ( A n ~ , )  = [n + 11& n = 0, 1,2, .. . . 
In the following we shall give some comments in order. Although each Dq(A) above 

is given as a ration of a q-integer [n]&, it is a polynomial with respect to q. For example 

(N odd) 
m=l 

( N  even) 
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N-1 

Dq(Ah+A,) = x [ 2 m  -k 11,hj. 
"4 

(Noh that the q-integer [ a ] ~  is a polynomial of 4.) Moreover, our calculations show that 
the maximum absolute value of the exponents of 4 is always given by 

(A7 P). 

Here p = ELl 4 is half the sum of positive roots. 
On the other hand, the parameter 4 is a root of unity, as shown in equation (6). 

Consequently, if we require that D&,) be expressed as a sum of q-integers [nIpi/. for 
some integer a, we have to impose the condition 

(7) 
1 
- {dA. P )  + 11 < $W+ Q(AdJ)l a 

in order to ensure that D,(A,) becomes a dimension of AA in the l i t  q goes to It.  
This condition is satisfied if AA is the integrable representation. The expressions for the 

Dq(Ai)'s given in this paper are valid if k is large enough to ensure that AA is the integrable 
representation. Note that for the general compact and simple Lie groups the calculations 
in [21] show 

for AI ,  DI, 
for 4, CI and F4 

for Gz. 

E7 and E8 
llong rootI2 
lshort rootI2 

u = 2 x  

Here the factor 2 appears because of our convention for the deformation parameter 4. Under 
the condition (7) D,(A*) is a positive number satisfying 

1 < D&A) < d i d & ) .  

In the appendix we summarize the results of similar computations for other compact 
and simple Lie groups. 

Appendix 

BI = SO(N):  N = 21 + 1, I > 2 ( N  2 5). We consider the following tensor product 
decompositions: 

AA, @ A i ,  = A:, @A; 8 1' 

t This condition is derived by using an identity q" i q-" = [um i 1],1,. - [am - 1],~,= 



2414 M Hayashi 

Quadratic Casimirs of these representations are listed in table AI. Note that (Al) is valid 
for I 5. For small I we have to modify these expressions as 

Algebraic equations constructed from these decompositions are easily solved. The 
results are 
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D q ( h )  = 

for 1 = 2 

for 1 = 3 

r ( q l / 4  + q-1/4) (q3/4 + q-3/4) 

(q1/4 + q-1/4) (q3/4 + q-3/4)  (‘5/4 + q-5/4) 

(q1/4 + q - v 4 )  (q3/4 + q - 3 / 4 )  

(q5/4 + q-5/4) (q7/4 + q-7/4) for 1 = 4. 
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Here 

These formulae agree with those given in equation (62) of [13]. Note that quadratic Casimirs 
are 

QAA, = !ji(N - i) for i  =0 ,1 ,2 ,  ..., 1 - 1 

Q&A, = fI(N - I )  = $(I+ I). 

D,(A)’s for higher spinor representations are also computed. Let us consider the 
following decompositions: 

AA! 8 AA, =~AA,+A, 03 AA, 

Aiz 8 AA, = Aa,iA, @ &+A, @ AA, 

A311 8 h1 = h31~+4 8 Au,+A,. 

The modification (A2) must be taken into account. (Moreover, AA~+A, does not exist for 
I = 2.) Quadratic Casimirs are listed in table A2. From the algebraic equations constructed 
in this case, D,(AA)’s are determined up tot Dq(Ai,):  

t All of ths Dq(A$s are proportional to D4(hi,), and so D4(Ai , )  can not be determined from the algebraic 
equations constructed based upon the decompositions (A3). 
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A A 4  &+A, 

&+*r A211+k Ah+4 

Q(N &W2 - N )  $ ( N 2  + 7 N )  

& ( N 2 +  15N - 16) &(N2 + 15N + 16) &(N2 + 23N - 48)  

Ci = Sp(N) :  N =-U, 2 > 3 ( N  > 6). We consider the following tensor product 
decompositions: 
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Dr = SO(N):  N = 21, I 2 4 (N 8). There is one to one correspondence between 
ordinary (not spinor) representations of B, and DI. The corresponding representations have 
the same expressions for dimensions and quadratic Casimirs if we use N to express them. 
They satisfy the same tensor product decompositions (Al). Consequently the D,(A,)'s for 
them coincide with each other. In the case 4, however, Dq(AA)'s can be expressed as a 
rational of, not [ n ] ~ ,  but [n],,q, because N is even: 
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- - .  

These formulae are valid for 1 2 6 and the following replacement must be imposed for 
small 1 

1 =4: 13 + 13 -I 14 and Ai, + An, 63 Au,  

l = 5  A 4 +  A 4 + A 5 .  
(-45) 

Concerning spinor representations, however, there appear differences between B! and 
Dt. There are two spinor representations in 01: and Ai,. They are self-conjugate for 
even 1, conjugate to each other for odd I ,  and satisfy the following decomposition formulae: 

' (4 1 / 2  + 4-1/2) (42/2 + q-2/2) (q3/2 + q-3/2) for 1 = 4 

( q ~ / z  + 4 - ~ / z )  (qz/z + q-z / z )  (q3/2 + q-3/2) 

x (4412 + 4 - 4 9  for 1 = 5 

(p + 4-1/2) (42/2 + 4-2/z) (q3 /2  + q-3/2) 

(44/2 + q-4/2) (q5/2 + q-5/2)  for 1 = 6 

1 even 
1 odd 
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From these examples the following forms for some D,(AA)’s are anticipated: 

Note that quadratic Casimirs are: 

Q(AA,) = $i(N - i )  

Q(AA,_,+A,) = 2 0 -  1)(N - 1 + I) = 

Q(Au,) = Q(Au,-,) = $l(N - I )  = $1’. 

for i  = 0 , 1 , 2 , .  . . , I  - 2  

1 - 1) 

For higher spinor representations the decompositions (A3) are also satisfied under the 
modification (A5). Then the Dq(Ai)’s listed in (A4) are also valid. Note that we can 
replace AI with 11-1 in (A3) and (A4) owing to the symmehy between them. 

Gz. From now on we use dimensions to distinguish the irreducible representations. Let us 
consider the following tensor product decompositions: 

7 8 7  = 27+$ 14- $7- $I+ 

7 8 14 = 64 8 27 $ 7 
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7 @ 27 = 77 @ 64 @ 27 @ 14 @ 7 

7 @ 64 = 189 @ 77’ & 77 @ &@ 27 @ 14 

7 8 77 = I89 03 I82 03 77 03 64 03 27 

7@77’ = 286 @ 189 @ 64 

14@ 14 = 77; @ 77- @ 27, @ 14- @ 1+ 

14 @ 27 = 189 @ 77 @ 64 @ 27@ 14 @ 7 

14 @ 77 = 448 @ 189 @ 182 @ 77’ @ 77 @ 64 @ 27@ 14 

14 @ 77‘ = 448 @ 273 @ 189 @ 77’ @ 77 @ 14. 

7 is the defining representation of GZ.  Quadratic Casimirs of these representations are listed 
in table A4. Then, Dq(Ai)’s are fixed as: 
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Table A4. Casimir O(hl of 7.14,27,64,77,77', 182,189,273,286 and 448 for Gz 

Here we have also used highest weights to distinguish the representations, as before, for the 
sake of later convenience. 

Through the computations of these examples the general form of D,(A,A,+,A,) is 
anticipated 

[6m+3n+9]% [3m+3n+6]= 13m+2n+51g 
 IS Dq(Amit+nAr) = 

[91 

[3m + n + 4 1 ~  [3m + 31% 
X [n+11%. 

141 % 131 

Here OUT convention for the fundamental weights of Gz is 

with the invariant form = 6,. The dimension and quadratic Casimir of Ami,+n~r  
are 

diIn(AnA!+nA2) = + ~ 2 m  + n + 3)(m + n + 2)(3m + 2n +5)(3m + tt + 4icm + l)(n + 1) 
Q(A,A,+.A,) = mz + mn + fn'+ 3m + gn. 
F4. We consider the following tensor product decompositions: 

5 

2 6 8  26 = 324, @ 273- @ 52- @26+ f3 1+ 

26 8 52 = 1053 @ 273 @ 26 

26 63 273 = 4096 @ 1274 f3 1053 @ 324 f3 273 @ 52 @ 26 

26 8 324 = 4096 @ 2562 f3 1053 f3 324 @ 273 @ 26 

52 8 52 = 1274- f3 1053; @ 324+ @ 52- @ 1+ 

52-8 273 = 8424 f3 4096 @ 1053 @ 324 @ 273 @ 26 

52 8 324 = 10 829 f3 4096 @ 1273 @ 324 f3 273 @ 52. 

26 is the defining representation of F4. Quadratic Casimirs of these representations are list 
in table A5. Then, the D,(&)'s are determined as 
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Table AS. Casimir Q(A) of 26,52,273,324,1053,1053', 1274,2652,4096,8424 and 10829 
for F4. 

A 26 52fAdi) 273 324 1053 1053' 1274 

OtA) 6 9 12 13 16 20 18 

2652 4096 8424 10829 

21 3 23 24 

Ea. We consider the following tensor product decompositions: 

- 27 6327 = 351'+ @ %it @z?+ 
- 27@= = 650 @ 78 €3 1 

- 27 @ 78 = 1728 @ 351 @ 22 
- 27 @%=me 1728 @ 351 @ 27 

- 27 @%i = 2925 @ 650 €3 78 

- 2 7 @ = = m @ 1 7 2 8 € 3 z ?  

- 27 @ 351' = 5824 @ 3003 @ 650 

78 @ 78 = 2925- @ 2430+ @ 650+ @ 78- @ 1+.  
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Table A6. Casimir Q(A) of Z 78, &?.&, 351’. 650,1228. 2430, 2925, 3003. 5824,7371 and - 7722 for Ea. 
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E,. We consider the following tensor product decompositions: 

56 8 56 = 1539- fB 1463+ fB 135 fB 1- 

56 8 133 = 6480 fB 912 fB 56 

56 8 912 = 40 755 fB 8645 fB 1539 fB 133 

56 8 1463 = 51072fB 24320 fB 6480 fB 56 

56 8 1539 = 51072fB 27664 fB 6480 fB 912fB 56 

133 @ 133 = 8645- fB 7371, fB 1539+ fB 133- @ 1+ 

133 8 912 = 86184 @ 27664 fB 6480 fB 912fB 56. 

56 is the defining representation of E7. Quadratic Casimirs of these representations are 
listed in table A7. Then, the Dq(&)’s are calculated as 
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Table A7. Casimir Q(A) of 56, 133, 912, 1463, 1539, 6480. 7371, 8645, 24320. 27664, 
40755. 51072 and 86184 for E*. 

A 56 133(Adi) 912 1463 1539 6480 7371 

Q(A) 4 18 T 30 28 38 

8645 24320 27664 40755 51072 86184 

?K - 189 N3 42 111 Lg 

E*. We consider the following tensor product decompositions: 

248 0 248 

248 8 3875 = 779 247 Q 147 250 Q 30 380 Q 3875 Q 248 

248 @ 27 000 = 4 096 000 €3 1763 125 Q 779 247 Q 30 380 Q 27 000 Q 248 

248030380 =4096000@2450240Q779247@ 147250Q30380Q27000 

30380- Q 27000+ @ 3875, Q 248- Q 1+ 

@ 3875 83 248 

3875 0 3875 = 6 696000- @ 4 881 384+ Q 2 450 240+ Q 779 247- Q 147 EO+ 

Q 30 380- Q 27 000, Q 3875+ Q 248- Q l+. 

248 is the defining and simultaneously the adjoint representation of E8. Quadratic Casimirs 
of these representations are listed in table AS. Then, the Dq(A,$s are determined as 
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'Ihble AS. Casimir Q(A) of 248,3875,27000,30380,147250,779247.1763125.2450240. 
4096000,4881384 and 6696000 for Es. 

A %S(Adj) 3875 27000 30380 147250 

Q(N 30 48 62 60 72 

779247 1763125 2450240 4096000 4881384 6696000 

80 96 90 93 100 98 

References 

[l] Drinfeld V G 1986 Pmc. Int. Congr. Marhemiicim, Berkeley I986 p 798 
[2] Jimbo M 1985 Len. Matk Phys. 10 63; 1986 11 241; Commun. Math. Phys. 102 573 
[3] Womnowia S L 1987 Commun. Math Phys. 111 613 
[4] Fadeev L D, Reshetikhin N Yu and Takuhtajan L A 1989 Alg. i Analir. 1 178 
(51 Reshetikhin N Yu 1987 LoMIpmprkrs (St Petersbmg: W M Q  -87, E17-87 
[6] Witten E 1989 Commun. Math Phys. 121 351; 1989 Nud. Phys. B 322 629; 1990 Nucl. Phys. B 330 285 
[7] Wend H 1990 Commun. Math. Phys. 133 383 
181 Alvarez-Gaum6 L, G6mez C and Siena G 1990 Nucl. Phys. B 330 347 
191 P?.squier V and Saleur H 1990 Nucl. Phys. B 330 523 

[ IO] Furlan P, Ganchen A C h  and Petkova V B 1990 Nucl. Phys. B 343 205 
[ I l l  Fuchs J and van Duel P 1990 Nud. Phys. B 346 632 
[12] Fucb J 1991 C o m a  Math. Phys. 136 345; CERNpreprint cERN-T€l.6156/91 
[13] Bang R B, Gould M D and Bracken A J 1991 Commun. Math. Phys. 137 13 
[I41 Bernard D 1990 Prog. Theor. Phys. SuppL 102 49 
[I51 Arefeva I Ya and Volovich I Y 1991 Mod Phys. Lell. A 6 893 
[I61 Hirayama M 1992 Pmg. Theor. Phys. 88 111 
1171 Isaev A P and Popoeicz Z 1992 Phys. Len. ZSlB 271 
[18] Wu K and Zhang R 1992 Commun. Theor. Phys. 17 175 
[19] Brrezidrld T and Majid S 1993 Phys. Len. 298B 339; 1992 University of Cambridgepreprinr DAMTP-92-27 
[20] Watuwra S 1992 Preprint HD-TH6P-92-39 
[21] Bayashi M 1993 Prog. Theor. Phys. 90 263; Nucl. Phys. B 405 228 
[22] Jones V F R 1985 BulL Am Matk Soc. 12 103; 1987 Ann Mark 126 335 
[23] Freyd P. Yener D, Hoste J, Lickorish W B R, Millet K C and Ocneanu A 1985 Bull. Am Math. Soc. 12 239 
[a] Akutsu Y and Wadachi M 1987 3. Phys. Soc. Japan 56 3039 



2428 M Hayashi 

I251 Akntsu U, Deguchi T and Wadachi M 1987 J. Pkys. Soc. Japan 56 3464; 1988 J. Phys. Soc. Japan 57 757, 

[26] Kauffman L H 1987 Topology 26 395: 1988 Contemp” Math 78 ‘Braids’ (Providence. R I  A M S) 
1173, 1905,2921; 1989 Pkys. Rep. C 180 247 

p 263; 1990 Int. J. Mod Phys. A 5 93 

575; 336 581 
[271 Guadagnin E. M a t e l l i  M and Mintchev M 1989 Pkys. Lett. 227JI 111; W8B 489; 1990 Nucl. Phys. B 330 

1’281 Cotta-Ramusino P, Guadagnhi E, Marlellini M and Mintchev M 1990 Nucl. Phys. B 330 557 
[29l Guadagnini E 1990 Pkys. Lm. Z51B 115; 1992 Int. J. Mod. Phys. A 7 877 
[301 Hayashi M and Zen F P 1994 Prog. Theor. Pkys. 91 in press 


